An international team of researchers has just determined the origin of the building blocks of Titan and Enceladus, the most interesting moons of Saturn from an astrobiological point of view, and which are currently the subject of several robotic exploration projects. Their work has provided new constraints on the conditions of formation of the solids necessary for the construction of these moons.
Abstract: The building blocks of Titan and Enceladus are believed to have formed in a late-stage circumplanetary disk (CPD) around Saturn. Evaluating the evolution of the abundances of volatile species in this disk as a function of the migration, growth, and evaporation of icy grains is then of primary importance to assess the origin of the material that eventually formed these two moons. Here we use a simple prescription of Saturn’s CPD in which the location of the centrifugal radius is varied, to investigate the time evolution of the icelines of water ice, ammonia hydrate, methane clathrate, carbon monoxide, and dinitrogen pure condensates. To match their compositional data, the building blocks of both moons would have had to form in a region of the CPD situated between the icelines of carbon monoxide and dinitrogen at their outer limit, and the iceline of methane clathrate as their inner limit. We find that a source of dust at the location of centrifugal radius does not guarantee the replenishment of the disk in the volatiles assumed to be primordial in Titan and Enceladus. Only simulations assuming a centrifugal radius in the range 66–100 Saturnian radii allow for the formation and growth of solids with compositions consistent with those measured in Enceladus and Titan. The species are then able to evolve in solid forms in the system for longer periods of time, even reaching an equilibrium, thus favoring the formation of Titan and Enceladus’s building blocks in this region of the disk.